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Applying polygenic risk scoring for psychiatric
disorders to a large family with bipolar disorder and
major depressive disorder
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Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay

of common and rare variation. Traditionally, pedigrees are used to shed light on the latter

only, while here we discuss the application of polygenic risk scores to also highlight patterns

of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large

pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or

bipolar disorder. Studying patterns of assortative mating and anticipation, it appears

increased polygenic risk is contributed by affected individuals who married into the family,

resulting in an increasing genetic risk over generations. This may explain the observation of

anticipation in mood disorders, whereby onset is earlier and the severity increases over the

generations of a family. Joint analyses of rare and common variation may be a powerful way

to understand the familial genetics of psychiatric disorders.
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The development of polygenic risk scoring (PRS) has greatly
advanced the field of psychiatric genetics. This approach
allows for even sub-genome-wide significant threshold

results from large genome-wide meta analyses to be leveraged to
explore genetic risk in smaller studies1. The effect sizes at many
individual single-nucleotide polymorphisms (SNPs), estimated by
large genome-wide association studies (GWAS) on the disorder of
interest, are used to calculate an individual level genome-wide
PRS in individuals from an independent genetic dataset. The PRS
based on the summary statistics of the schizophrenia (SCZ)
GWAS by the Psychiatric Genomics Consortium (PGC)2,3 has
proven to be most powerful in predicting not only SCZ1,4 but also
other psychiatric disorders5–7. In addition, updated, more pow-
erful, summary statistics from the Psychiatric Genomics Con-
sortium from the latest GWAS for bipolar disorder (BPD) and
major depressive disorder (MDD) are available via the PGC Data
Access Portal (https://www.med.unc.edu/pgc/shared-methods).

Aside from increasing power in traditional case-control
designs, PRS algorithms also open up new avenues for studying
common variation. In this study, we consider the application of
PRS within a family context. While pedigree studies have been
traditionally used to explore rare genetic variation through link-
age analyses, studying patterns of PRS throughout a pedigree
would allow for assessment of phenomena like assortative mating
and anticipation. Assortative (non-random) mating is a common
phenomenon where mated pairs are more phenotypically similar
for a given characteristic than would be expected by chance8.
Results from a recent study by Nordsletten et al.9 show extensive
assortative mating within and across psychiatric, but not physical
disorders. This could explain some of the features of the genetic
architecture of this category of disorders9–11. This includes
anticipation, a phenomenon where later generations exhibit more
severe symptoms at an earlier age, robustly reported (although
not explained) in BPD12, and recently highlighted in genetic
studies of MDD13,14.

In the current study, we aim to discuss the application of
polygenic risk scoring for SCZ, MDD, and BPD to explore pat-
terns of common risk variation within a family context. We
illustrate our discussion by investigating the relationship between
PRS and apparent assortative mating, and anticipation within a
complex multigenerational pedigree affected with mood
disorders.

Results
Study overview. We identified a large pedigree in Brazil, the
Brazilian Bipolar Family (BBF), after examination of a 45-year-
old female who presented with severe Bipolar Type 1 (BPI) dis-
order. She stated there were dozens of cases of mood disorders in
the family, most of whom lived in a small village in a rural area of
a large state north of São Paulo (see Methods for details). We
conducted 308 interviews using the Portuguese version of the
Structured Clinical Interview for DSM-IV Axis I Disorders
(SCID-I)16 for family members over the age of 16 and the Por-
tuguese version of Kiddie-SADS-Present and Lifetime Version
(K-SADS-PL)17 for family members aged 6–16. Following diag-
nostic interviews, we conducted genotype analysis of all inter-
viewees using the Illumina Infinium PsychArray-24. Polygenic
risk scores (PRS) were assigned to each family member using PRS
thresholds most predictive in discriminating affected from unaf-
fected family members (see Methods).

Affection status. The PRS thresholds were selected to optimally
discriminate between affected (n= 78) versus unaffected (n=
147) family members with a higher score in affecteds for SCZ:PRS
(Beta= 0.069, SE= 0.032, Z-ratio= 2.117, p= 0.035, R2=

0.021), and BPD:PRS (Beta= 0.094, SE= 0.030, Z-ratio= 3.123,
p= 0.002, R2= 0.039). None of the PRS significantly dis-
criminated between individuals having experienced a psychotic
episode at some point in their lives (n= 25) versus the unaffected
group (n= 147). Visualization of PRS in different diagnostic
categories is shown in Supplementary Figure 1.

Assortative mating. Married-in individuals were defined as
individuals married to a BBF member, but having no parents in
the family themselves. Of the 70 married-in individuals ascer-
tained (irrespective of having genotype data) 19 (27%) were
affected with a psychiatric disorder. This is significantly higher
than the 17% population prevalence of the most common of the
three disorders: MDD (Fisher’s exact p= 0.02)15. The unaffected
married-in group does not differ from the general healthy
population as evidenced by no significant differences in PRS as
compared to the population control group (BRA; see Methods).
The above led us to investigate whether we can observe assorta-
tive mating on a genetic level, using PRS. In spouse pairs, we were
unable to predict the PRS of the husband, using that of his wife,
even when selecting concordant (both affected or both unaf-
fected) pairs only. We considered the possibility that the married-
in individuals might confer a different genetic predisposition to
mood disorders to their offspring than the original family
members. The number of children contributed per spouse pair to
each offspring category is shown in Supplementary Table 1.
Demographics of the offspring in the different offspring cate-
gories (no affected parents (n= 54); one affected family member
parent (n= 69); one affected married-in parent (n= 15) and two
affected parents (n= 38)) are given in Supplementary Tables 2
and 3. Indeed, we find that offspring of an affected married-in
parent show increased SCZ:PRS (Beta= 0.209, SE= 0.064, Z-
ratio= 3.288, p= 0.002, R2= 0.186, Fig. 1) and BPD:PRS (Beta
= 0.172, SE= 0.066, Z-ratio= 2.613, p= 0.013, R2= 0.126,
Fig. 1) as compared to having no affected parents.

Anticipation. The BBF shows patterns of anticipation, with
individuals having an earlier age at onset (AAO) in later gen-
erations. For 104 individuals (irrespective of having genotype
data), the average age at onset significantly decreases over gen-
erations with G2 (n= 1, AAO= 8), G3 (n= 23, AAO= 30.2 yrs
± 21.1), G4 (n= 53, AAO= 31.2 yrs ± 12.3), G5 (n= 23, AAO=
19.7 yrs ± 9.5), and G6 (n= 4, AAO= 13 yrs ± 3.6) (Supplemen-
tary Figure 2) with older participants recalling their AAO directly
and younger participants confirmed using clinical records or
parental recall (Beta=−4.549, SE= 1.793, Z-ratio=−2.537, p
= 0.013, R2= 0.059). We hypothesized that this decrease in AAO
would be reflected in a negative correlation with PRS, subse-
quently resulting in a pattern of increased PRS over generations.
Because of a limited sample size of affected individuals per gen-
eration, a direct correlation of AAO and PRS does not reach
significance, although the youngest generation (G5) does
show trends towards negative correlations for SCZ:PRS
and MDD:PRS (Supplementary Figure 3). The SCZ:PRS does
show a significant increase over generations (Fig. 2) where
n= 197 family members were included (46 married-in indivi-
duals were excluded from the analysis to capture inheritance
patterns of SCZ:PRS) in a linear regression with generation as
independent variable (Beta= 0.131, SE= 0.049, Z-ratio= 2.668,
p= 0.008, R2= 0.025). The presence of such an effect when
comparing generations suggests ascertainment effects such as
relying on the recall of older family member with very long
duration of illness in previous generations may be masking an
overall effect across the entire family.
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Balance of common and rare genetic risk. Transmission dis-
equilibrium test analysis within the chr2p23 linkage region
resulted in identification of rs1862975, a SNP originally typed on
the Affymetrix linkage array (combined test p= 0.003). The
homozygous T genotype was detected in 68% affected family
members, 57% affected married-ins, 36% unaffected family
members and 24% unaffected married-ins. Since this SNP was
present only on the Affymetrix array, we identified rs12996218 as
a proxy in CEU/TSI populations (D′= 1.0, R2= 0.92) via the
LDproxy option in LDlink (Machiela et al.16, https://analysistools.
nci.nih.gov/LDlink/). Of the 57 BRA controls, 9 individuals (15%)
carried the GG genotype equivalent to the rs1862975 TT risk
genotype. The distribution of the rs1862975 genotypes in affected
and unaffected individuals over generations is given in Supple-
mentary Figure 4. The number of individuals carrying the TT
does not significantly change over generations in either group.
None of the PRS showed a significant difference when comparing
PRS for rs1862975 genotypes in affected and unaffected indivi-
duals (Supplementary Figure 5).

Discussion
The current study is one of the first the first to probe patterns of
common genetic variation within a traditional pedigree design.
While increased polygenic scores in patients as compared to
unaffected family members have been demonstrated recently17,
we aimed to illustrate the possibilities of this approach by
investigating apparent assortative mating and anticipation in a
large multigenerational pedigree affected with mood disorders
through polygenic risk scores for SCZ2, MDD18, and BPD19, and

thereby improve mechanistic understanding of common genetic
risk for psychiatric disorders.

Highlighting the possibilities of PRS applications within a
family context, we set out to utilize patterns of common variation
to illuminate phenomena within the family that are out of reach
from traditional case/control studies. Assortative mating is one of
the features in this family, where many married-in individuals are
more affected with a mood disorder than the general population.
As opposed to the family members, the married-in individuals
were more often affected with (r)MDD instead of BP. As diag-
noses were determined after the couples were married, we cannot
rule out that this could be a result from a causal effect of a spouse’s
mental health on that of their partner. However, non-random
mating patterns have been reported in the population regarding
body type, socio-economic factors and psychiatric traits9,10. The
BBF provides a unique opportunity to look at the genetic corre-
lation between spouse pairs and the contribution of married-in
individuals to overall psychiatric morbidity. A recent study has
found genetic evidence for assortative mating when studying BMI
and height in spouse pairs11. In the BBF; the affected married-in
individuals have a higher, though non-significant, polygenic score
than affected or unaffected family members but it appears that we
observe significant consequences of this in that the offspring of an
affected married-in parent collectively show significantly increased
SCZ:PRS and BPD:PRS. However, it is puzzling we do not see an
effect on offspring of two affected parents (which would include a
married-in parent), which could indicate this finding to be of
limited statistical robustness.

A contribution of the married-in parents to a genetic driven
anticipation in age of onset is supported by the increase in SCZ:
PRS over generations, although our cross sectional study dataset
was less well powered to find an association with age at onset
within affected family members. We did observe a trend for
association between age at onset and PRS in the youngest gen-
eration in this study but not when combining sample across
generations. Age at onset can be considered a proxy for
severity20,21 and has been previously associated with genetic risk
in MDD13,14. However, this variable needs to be interpreted with
caution, especially when analyzing patterns over time since it is
dependent on context and memory22. Ascertainment bias can be
a confounding factor in studies of psychiatric traits, with older
generations having less access to psychiatric care and possibly
misremembering the onset or nature of their first episode. In
addition, although currently classified as “unaffected” or
“unknown”, members of the youngest generations can still
develop a psychiatric disorder in the future.

Finally, we explored the balance of common and rare risk
variation through combining our current PRS results with
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Fig. 2 Violin plots of SCZ:PRS, MDD:PRS and BPD:PRS per generation for
family members only, with results for the generations G3 (n= 25, orange
plots), G4 (n= 72, light blue plots), G5 (n= 80, pink plots), and G6 (n= 16,
dark purple plots) (excluding the oldest generation G2 and youngest
generation G7 because of n= 2 sample size). The dot and error bars
represent mean ± standard deviation of standardized PRSs
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Fig. 1 Violin plots of SCZ:PRS (dark blue plots) MDD:PRS (light blue plots) and BPD:PRS (green plots) for offspring of all spouse pair possibilities. The first
category represents PRS in individuals with no affected parents, the next for individuals with an affected family member parent, followed by offspring of an
affected married-in individual, and finally offspring of two affected parents. The last two sets of violin plots represent offspring of unknown spouse pairs and
the BRA controls. The dot and error bars represent mean ± standard deviation of standardized PRSs
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previously performed linkage analyses. We did not find a decrease
in potential rare risk allele genotypes over generations contrasting
the increase in SCZ:PRS, and PRS profiles for individuals carrying
rare risk genotypes are not significantly different. This indicates
that these factors separately confer independent disease risk. We
recognize the limitations in sample size of our pedigree and
therefore the power to draw statistically robust conclusions,
especially in the offspring and combined linkage and PRS ana-
lyses. Even though the BBF might not be sufficiently powered, our
point is to use this dataset to illustrate our approach and
emphasize the unique nature of the family enabling the study of
patterns of PRS and the balance of common and rare genetic risk
for psychiatric disorders conferred within families. We encourage
replication in similar pedigrees including affected married-in
individuals when available to fully utilize the potential of PRS in
this setting.

In conclusion, our study is an exploration of PRS as a tool for
investigating patterns of common genetic risk in a traditional
pedigree context. The SCZ and BPD scores appear best suited in
our data for teasing apart patterns of assortative mating and
anticipation, whereby increased polygenic risk for psychiatric
disorders is contributed by affected individuals who married into
the family, adding to the already present rare risk variation passed
on by the early generations23.

Methods
Subject description. The Brazilian bipolar family (BBF) was ascertained via a 45-
year-old female proband who presented with severe Bipolar Type 1 (BPI) disorder
and stated there were dozens of cases of mood disorders in the family, most of
whom lived in a small village in a rural area of a large state north of São Paulo.
Cooperation from the family and a 2003 self-published book about their history
was invaluable for our ascertainment. Historically, the entire BBF consists of 960
members. Living family members > 16 years of age underwent semi-structured
interviews, using the Portuguese version of the Structured Clinical Interview for
DSM-IV Axis I Disorders (SCID-I)24. Members aged 6–16 were assessed using the
Portuguese version of Kiddie-SADS-Present and Lifetime Version (K-SADS-PL)25.
In total 308 interviews were completed, and 5 eligible members declined an
interview. In the rare event of discrepancies, two independent psychiatrists
reviewed them and a final consensus diagnosis was assigned. All affected and
unaffected adult family members that have been included in the genetic study have
given informed consent. Minors have given assent, followed by consulted consent
by their parents in accordance with accepted practice in both the U.K. and Brazil.
The project was approved by the Brazilian National Ethics Committee (CONEP).
Table 1 contains the demographics of the subjects used in the current analysis (n=
243 passed genotype quality control procedures described below). The population
control dataset (BRA controls) was collected in Sao Paulo, Brazil, as a control

dataset in a genetic study of first-episode psychosis26. They were volunteers who
had no abnormal psychiatric diagnoses (SCID) or family history of psychotic ill-
ness. The Research Ethics Committee of Federal University of Sao Paulo (UNI-
FESP) approved the research protocol, and all participants gave informed consent
(CEP No. 0603/10). Demographics for n= 57 BRA controls can be found in
Table 1.

Genotype data. Following diagnostic interview, interviewers obtained whole blood
in EDTA containing monovettes for adults and lesser amounts or saliva given
personal preference or age (DNA Genotek Inc., Ontario, Canada). Genomic DNA
was isolated from whole blood and saliva at UNIFESP using standard procedures.
Whole-genome genotype data was generated using the Illumina Infinium
PsychArray-24 (http://www.illumina.com/products/psycharray.html) for both the
BBF and the BRA control dataset at the in-house BRC BioResource Illumina core
lab according to manufacturers protocol. Samples were excluded when average call
rate was <98%, missingness >1% with additional check for excess heterozygosity,
sex, family relationships and concordance rates with previous genotyping assays.
SNPs were excluded when missingness > 1%, MAF < 0.01 or HWE < 0.00001 and if
showing Mendelian errors for the BBF dataset in Plink v1.0727 and v1.928 or Merlin
v1.1.229. The BBF and BRA control datasets were QC’d separately and then
merged, applying the same SNP QC thresholds to the merged dataset as well. This
quality control procedure resulted in a dataset of 225,235 SNPs for 243 BBF
individuals (197 family members and 46 married-in individuals) and 57 BRA
controls. Eigensoft v4.230 was used to check for population differences between
the BBF family members, married-in individuals and BRA control sets. The
BBF members self-reported mixed Southern European ancestry, confirmed by
genome-wide principal components analysis showing that family members clus-
tered closely with the Northern and Western European and Tuscan Italian
populations in Hapmap3, with a relative lack of African or Native American
ancestry (Supplementary Figure 6). The principal components appear to repre-
sent within-family structure, with most PCs seemingly separating subfamilies
(Supplementary Figures 7 and 8). PRS analyses as described below were also
performed to include subfamily as a fixed effect, controlling for household
effects (Supplementary Table 3). PC1 and PC2 are significantly correlated to the
SCZ:PRS (PC1 r=−0.131, p= 0.023; PC2 r=−0.268, p= 2.611 × 10−6), PC1 to
MDD:PRS (PC1 r=−0.251, p= 1.114 × 10−5), and PC1 and PC2 to BPD:PRS
(PC1 r= 0.189, p= 9.710 × 10−4; PC2 r=−0.123, p= 0.033). The principal
components were not used in subsequent analyses.

Polygenic risk scores. Polygenic risk scores for each family member (n= 243) and
population control (n= 57) were generated in the same run using the PRSice
v1.25 software31 with the publically available PGC schizophrenia GWAS2 as a base
dataset (36,989 SCZ cases, 113,075 controls), in addition to MDD (51,865 MDD
cases, 112,200 controls, not including 23andme individuals) and BPD (20,352 BPD
cases, 31,358 controls) summary statistics from the latest PGC meta analyses
(unpublished data18,19). We performed p-value-informed clumping on the geno-
type data with a cut-off of r2= 0.25 within a 200-kb window, excluding the MHC
region on chromosome 6 because of its complex linkage disequilibrium structure.
Acknowledging the possibility of over-fitting, we selected the PRS thresholds most
predictive in discriminating affected from unaffected family members through
linear regression in PRSice for SCZ:PRS (p < 0.00055, 1218 SNPs), MDD:PRS (p <

Table 1 Demographics of the Brazilian bipolar family members and the Brazilian population control dataset (BRA controls) in the
current study

Diagnosis n Male, female Age (±sd) Age of onset (±sd) Married-in Psychosis

BPI 17 6, 11 50.4 (±18.9) 24.9 (±14.6) 0 13
BPII 11 4, 7 38.7 (±15.2) 24.2 (±13.8) 1 4
BPNOS 8 6, 2 29.6 (±19.9) 17.0 (±18.7) 0 1
rMDD 17 5, 12 50.2 (±16.7) 27.3 (±14.1) 3 4
MDD 21 11, 10 43.8 (±17.8) 34.5 (±15.5) 6 1
SADB 1 0, 1 73 44 0 1
Schizophrenia 1 1, 0 44 36 0 1
Cyclothymia 1 0, 1 40 25 0 0
Dysthymia 1 0, 1 52 — 1 0
Unaffected 147 89, 58 36.8 (±20.0) — 35 0
Unknown 18 14, 4 5.7 (±7.1) — 0 —
Total 243 136, 107 37.3 (±21.0) 28.3 (±15.5) 46 25
BRA controls 57 33, 24 27.1 (±7.2) — — —

The first column contains the number of individuals affected with the disorder. A breakdown of gender, age, age at onset (with ± sd; standard deviation) is given in the next columns. The married-in
column contains the number of individuals in each diagnostic category married-in to the family. The last column contains counts of individuals in each category who have experienced a psychotic episode
during their lifetime
Diagnostic categories are BP1 bipolar I, BPII bipolar II, BPNOS bipolar not otherwise specified, rMDD recurrent major depressive disorder, MDD major depressive disorder, SADB schizoaffective disorder,
schizophrenia, cyclothymia and dysthymia
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0.0165, 715 SNPs) and BPD:PRS (p < 0.00005, 143 SNPs). PRS showed low to
modest correlations (no covariates) amongst each other in our data (SCZ:PRS
versus MDD:PRS r= 0.176, p= 0.002, SCZ:PRS versus BPD:PRS r= 0.124, p=
0.032, MDD:PRS versus BPD:PRS r=−0.026, p= 0.660).

Linkage analysis. The main linkage analyses identifying rare genetic risk variation
were performed as part of a previous paper on the BBF23 using the Affymetrix 10k
linkage genotyping array. In order to explore the balance between common and
rare risk variation, we selected the strongest signal for affected versus unaffected
family members on chr2p23 (chr2:30000001-36600000, LOD= 3.83). Following
the strategy described by Rioux et al.32, we performed a transmission dis-
equilibrium test on the 25 markers in this linkage region in an attempt identify
“linkage positive” individuals in n= 300 family members with one or both types of
genotype array data. N= 155 individuals overlap with the current study and based
on exploration of patterns of PRS in the current study we attempted to answer two
questions: (1) with an increase of common risk variation, does rare risk variation
become less important over generations, (2) do linkage positive individuals car-
rying the presumed risk allele show differences in PRS.

Statistical testing. All PRS were standardized mean= 0 and SD= 1. Linear mixed
model analyses were selected to be able to model covariates and relatedness within
this complicated dataset. The analyses were performed using the Wald conditional
F-test33 in ASReml-R software34 with one of the categories of mood disorders or
family status as dependent variable and PRS as the independent variable (Sup-
plementary Methods). Age (except for the generation analysis) and sex were fitted
as fixed effects in the models. For 7 individuals in the BBF age at collection was
missing and imputed to be the mean age of the relevant generation. To account for
relatedness in within-family comparisons, an additive genetic relationship matrix
was fitted as a random effect. The relationship matrix was constructed using LDAK
software35 with weighted predictors and LD correction parameters suited for
pedigree data, resulting in pairwise relatedness estimates and inbreeding coeffi-
cients on the diagonal. The variance explained by each PRS was calculated using:
(var(x × β))/var(y), where x was the standardized PRS, β was the corresponding
regression coefficient, and y was the phenotype36. For the analysis of offspring, we
defined four spouse pair categories (“both unaffected”, “married-in parent affec-
ted”, “family parent affected”, “both affected”). While most spouse pairs contribute
1 or 2 children to the same offspring category (Supplementary Table 1); two “both
affected” spouse pairs contribute 7 and 8 children, respectively. To prevent bias in
our analysis in the event of more than one child per couple, we calculated the mean
PRS for all offspring per spouse pair and entered this in the model as being one
representative child for that couple. All p-values reported are uncorrected for
multiple testing, since all tests concern overlapping individuals and thus have a
complex dependence structure. However, we have performed 42 tests as listed in
Supplementary Table 4, and so a conservative Bonferroni threshold for p < 0.05 is
0.001.

Data availability
In order to ensure privacy of the family members and to comply with Brazilian reg-
ulations, restrictions apply on availability of the data as determined by the Brazilian
National Ethics Committee (CONEP). Data are available upon reasonable request from
the corresponding author, pending approval by the BBF ethics committee (CONEP).
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